当前位置: 首页 > 面试题库 >

根据条件合并行熊猫数据框

池永长
2023-03-14
问题内容

嗨,有一个数据框 df

包含一组事件(行)。

df = pd.DataFrame(data=[[1, 2,   7, 10],
                   [10, 22, 1, 30],
                   [30, 42, 2, 10],  
                   [100,142, 22,1],
                   [143, 152, 2, 10],
                   [160, 162, 12, 11]],columns=['Start','End','Value1','Value2'])

 df
Out[15]: 
   Start  End  Value1  Value2
0      1    2       7      10
1     10   22       1      30
2     30   42       2      10
3    100  142      22       1
4    143  152       2      10
5    160  162      12      11

如果2个(或更多)连续事件的间隔小于等于10,我想合并2个(或更多)事件(即,使用第一个事件的开始,最后一个事件的结束,并将Value1和Value2中的值相加)。

在上面的示例中,df变为:

 df
Out[15]: 
   Start  End  Value1  Value2
0      1   42      10      50
1    100  162      36      22

问题答案:

完全有可能:

df.groupby(((df.Start  - df.End.shift(1)) > 10).cumsum()).agg({'Start':min, 'End':max, 'Value1':sum, 'Value2': sum})

说明:

start_end_differences = df.Start  - df.End.shift(1) #shift moves the series down
threshold_selector = start_end_differences > 10 # will give you a boolean array where true indicates a point where the difference more than 10.
groups = threshold_selector.cumsum() # sums up the trues (1) and will create an integer series starting from 0
df.groupby(groups).agg({'Start':min}) # the aggregation is self explaining

这是与其他专栏无关的通用解决方案:

cols = df.columns.difference(['Start', 'End'])
grps = df.Start.sub(df.End.shift()).gt(10).cumsum()
gpby = df.groupby(grps)
gpby.agg(dict(Start='min', End='max')).join(gpby[cols].sum())

   Start  End  Value1  Value2
0      1   42      10      50
1    100  162      36      22


 类似资料:
  • 我有一个数据框架: 和一本参考词典: 我的目标是将所有出现的< code > replacement _ dict[' X1 ']替换为' X1 ',然后将这些行合并在一起。例如,“x1”、“x2”、“x3”或“x4”的任何实例都将被替换为“X1”等。 我可以通过选择包含任何这些字符串的行并将其替换为“X1”来实现这一点: 给予: 现在,如果我选择所有包含“X1”的行并将它们合并,我将得到: 因此

  • 假设我有2个数据帧: DF1: Col1 | Col2 | Col3 XCN000370/17-18C|XCN0003711718C|0003971718 DF2 Col1 | Col2 | Col3 XCN0003711718C|XCN0003711718C|0003971718 我希望它们像这样合并: 首次匹配Col1(DF1)和Col1(DF2) 在保持不匹配的情况下,将Col1(DF1)与

  • 问题内容: 我有以下数据框 基本上我可以如下过滤行 我可以如下所示删除/删除一行 但是我想根据条件删除一定数量的行,我该怎么做? 问题答案: 最好的是但需要反转条件-使所有值相等且更高,如下所示: 与功能相同: 另一种可能的解决方案是通过以下方法反转掩码:

  • 我有一个熊猫数据框,大约有50列和

  • 问题内容: 我有一个熊猫DataFrame,里面有很多值。 如何删除这样的列? 我试图这样做: 有更优雅的方法吗? 问题答案: 这是保留每列中小于或等于指定数量的nan的列的另一种选择: 在我的测试中,这似乎比李建勋在我测试的案例中建议的放置列方法要快一些:

  • 我必须解决这个问题:目标:删除大多数行缺少输入的列:1。数据帧df:数据帧2。阈值:确定将删除哪些列。如果阈值为.9,则缺少90%值的列将被丢弃:1。带删除列的数据帧df(如果未删除任何列,则返回相同的数据帧) Excel文档截图 我编码了这个: 我必须有“自我、博士和阈值”,不能添加更多。代码必须通过下面的测试用例: 当我运行VT.drop_nan_col(df,0.9). head()时,我不

  • 问题内容: 我在加入熊猫方面遇到问题,并且试图找出问题所在。假设我有一个x: 我应该能够通过简单的连接命令在y = x上将y与索引上的y联接,除了同名具有+2。 我希望决赛对双方都有1941个非值。我也尝试过合并,但是我有同样的问题。 我以为正确的答案是pandas.concat([x,y]),但这也不符合我的预期。 编辑:如果您在加入方面遇到问题,请阅读下面的韦斯答案。我有一个重复的时间戳。 问

  • 问题内容: 我有不同的数据框,需要根据日期列将它们合并在一起。如果我只有两个数据帧,则可以使用来对三个数据帧进行操作,但是,使用多个数据帧将变得非常复杂且难以读取。 所有数据框都有一个共同的列- ,但是它们没有相同数量的行或列,而我只需要每个数据框共有每个日期的那些行。 因此,我正在尝试编写一个递归函数,该函数返回一个包含所有数据的数据框,但是它不起作用。那我应该如何合并多个数据框? 我试图dif