当前位置: 首页 > 面试题库 >

遍历行并扩展pandas数据框

濮阳唯
2023-03-14
问题内容

我的pandas数据框的列包含值或值列表(长度不等)。我想“扩展”行,因此列表中的每个值都变成列中的单个值。一个例子说明了一切:

dfIn = pd.DataFrame({u'name': ['Tom', 'Jim', 'Claus'],
 u'location': ['Amsterdam', ['Berlin','Paris'], ['Antwerp','Barcelona','Pisa'] ]})

    location     name
0   Amsterdam   Tom
1   [Berlin, Paris] Jim
2   [Antwerp, Barcelona, Pisa]  Claus

我想变成:

dfOut = pd.DataFrame({u'name': ['Tom', 'Jim', 'Jim', 'Claus','Claus','Claus'],
u'location': ['Amsterdam', 'Berlin','Paris', 'Antwerp','Barcelona','Pisa']})

    location     name
0   Amsterdam   Tom
1   Berlin   Jim
2   Paris   Jim
3   Antwerp Claus
4   Barcelona   Claus
5   Pisa    Claus

我首先尝试使用Apply,但据我所知不可能返回多个Series。遍历似乎是诀窍。但是下面的代码给了我一个空的数据框…

def duplicator(series):
    if type(series['location']) == list:
        for location in series['location']:
            subSeries = series
            subSeries['location'] = location
            dfOut.append(subSeries)
    else:
        dfOut.append(series)

for index, row in dfIn.iterrows():
    duplicator(row)

问题答案:

如果您返回一个index位置列表的dfIn.apply系列,则将这些系列整理到一个表中:

import pandas as pd
dfIn = pd.DataFrame({u'name': ['Tom', 'Jim', 'Claus'],
                     u'location': ['Amsterdam', ['Berlin','Paris'],
                                   ['Antwerp','Barcelona','Pisa'] ]})

def expand(row):
    locations = row['location'] if isinstance(row['location'], list) else [row['location']]
    s = pd.Series(row['name'], index=list(set(locations)))
    return s

In [156]: dfIn.apply(expand, axis=1)
Out[156]: 
  Amsterdam Antwerp Barcelona Berlin Paris   Pisa
0       Tom     NaN       NaN    NaN   NaN    NaN
1       NaN     NaN       NaN    Jim   Jim    NaN
2       NaN   Claus     Claus    NaN   NaN  Claus

然后,您可以堆叠此DataFrame以获得:

In [157]: dfIn.apply(expand, axis=1).stack()
Out[157]: 
0  Amsterdam      Tom
1  Berlin         Jim
   Paris          Jim
2  Antwerp      Claus
   Barcelona    Claus
   Pisa         Claus
dtype: object

当您需要一个DataFrame时,这是一个Series。稍微按摩一下即可reset_index得到所需的结果:

dfOut = dfIn.apply(expand, axis=1).stack()
dfOut = dfOut.to_frame().reset_index(level=1, drop=False)
dfOut.columns = ['location', 'name']
dfOut.reset_index(drop=True, inplace=True)
print(dfOut)

产量

    location   name
0  Amsterdam    Tom
1     Berlin    Jim
2      Paris    Jim
3  Amsterdam  Claus
4    Antwerp  Claus
5  Barcelona  Claus


 类似资料: