我想编写一个函数来规范大型稀疏矩阵的行(这样它们的总和为1)。
from pylab import *
import scipy.sparse as sp
def normalize(W):
z = W.sum(0)
z[z < 1e-6] = 1e-6
return W / z[None,:]
w = (rand(10,10)<0.1)*rand(10,10)
w = sp.csr_matrix(w)
w = normalize(w)
但是,这给出了以下异常:
File "/usr/lib/python2.6/dist-packages/scipy/sparse/base.py", line 325, in __div__
return self.__truediv__(other)
File "/usr/lib/python2.6/dist-packages/scipy/sparse/compressed.py", line 230, in __truediv__
raise NotImplementedError
是否有任何合理的简单解决方案?我已经看过这个了,但仍不清楚如何实际进行划分。
这已在scikit-learn sklearn.preprocessing.normalize中实现。
from sklearn.preprocessing import normalize
w_normalized = normalize(w, norm='l1', axis=1)
axis=1
应该按行axis=0
归一化,按列归一化。使用可选参数copy=False
来修改矩阵。